this paper is mainly devoted to investigate traveling wave solutions and the asymptotic speed of a population model 本文主要討論了一類人口模型的行波解與漸近波速。
we first derive a lattice population model with global interacton on infinite patches, then we prove the existence of wavefronts and the asymptotic speed by using the monotone iteration approach and the comparison principle respectively . the existence of solution for initial value problem is also proved 首先建立了一個(gè)在無(wú)窮斑塊間存在相互影響的格人口模型,然后分別利用單調(diào)迭代方法和比較原理證明了單調(diào)行波解的存在性以及漸近波速問題,同時(shí)也給出了系統(tǒng)初值問題解的存在性的嚴(yán)格證明。